SNF5/INI1 deficiency redefines chromatin remodeling complex composition during tumor development.
نویسندگان
چکیده
UNLABELLED Malignant rhabdoid tumors (MRT), a pediatric cancer that most frequently appears in the kidney and brain, generally lack SNF5 (SMARCB1/INI1), a subunit of the SWI/SNF chromatin-remodeling complex. Recent studies have established that multiple SWI/SNF complexes exist due to the presence or absence of different complex members. Therefore, the effect of SNF5 loss upon SWI/SNF complex formation was investigated in human MRT cells. MRT cells and primary human tumors exhibited reduced levels of many complex proteins. Furthermore, reexpression of SNF5 increased SWI/SNF complex protein levels without concomitant increases in mRNA. Proteomic analysis, using mass spectrometry, of MRT cells before and after SNF5 reexpression indicated the recruitment of different components into the complex along with the expulsion of others. IP-Western blotting confirmed these results and demonstrated similar changes in other MRT cell lines. Finally, reduced expression of SNF5 in normal human fibroblasts led to altered levels of these same complex members. These data establish that SNF5 loss during MRT development alters the repertoire of available SWI/SNF complexes, generally disrupting those associated with cellular differentiation. These findings support a model where SNF5 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones. Therefore, restoration of these complexes in tumors cells provides an attractive approach for the treatment of MRTs. IMPLICATIONS SNF5 loss dramatically alters SWI/SNF complex composition and prevents formation of complexes required for cellular differentiation.
منابع مشابه
The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression.
The assembly of eukaryotic DNA into nucleosomes and derived higher order structures constitutes a barrier for transcription, replication and repair. A number of chromatin remodeling complexes, as well as histone acetylation, were shown to facilitate gene activation. To investigate the function of two closely related mammalian SWI/SNF complexes in vivo, we inactivated the murine SNF5/INI1 gene, ...
متن کاملSNR1 (INI1/SNF5) mediates important cell growth functions of the Drosophila Brahma (SWI/SNF) chromatin remodeling complex.
SNR1 is an essential subunit of the Drosophila Brahma (Brm) ATP-dependent chromatin remodeling complex, with counterparts in yeast (SNF5) and mammals (INI1). Increased cell growth and wing patterning defects are associated with a conditional snr1 mutant, while loss of INI1 function is directly linked with aggressive cancers, suggesting important roles in development and growth control. The Brm ...
متن کاملThe SWI/SNF chromatin-remodeling complex subunit SNF5 is essential for hepatocyte differentiation.
Regulation of gene expression underlies cell differentiation and organogenesis. Both transcription factors and chromatin modifiers are crucial for this process. To study the role of the ATP-dependent SWI/SNF chromatin-remodeling complex in cell differentiation, we inactivated the gene encoding the core complex subunit SNF5/INI1 in the developing liver. Hepatic SNF5 deletion caused neonatal deat...
متن کاملLoss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability.
There is a growing appreciation of the role that epigenetic alterations can play in oncogenesis. However, given the large number of genetic anomalies present in most cancers, it has been difficult to evaluate the extent to which epigenetic changes contribute to cancer. SNF5 (INI1/SMARCB1/BAF47) is a tumor suppressor that regulates the epigenome as a core member of the SWI/SNF chromatin remodeli...
متن کاملMolecular and Cellular Pathobiology Aurora A Is a Repressed Effector Target of the Chromatin Remodeling Protein INI1/hSNF5 Required for Rhabdoid Tumor Cell Survival
Rhabdoid tumors (RT) are aggressive pediatric malignancies with poor prognosis. INI1/hSNF5 is a component of the chromatin remodeling SWI/SNF complex and a tumor suppressor deleted in RT. Previous microarray studies indicated that reintroduction of INI1/hSNF5 into RT cells leads to repression of a high degree of mitotic genes including Aurora Kinase A (Aurora A, STK6). Here, we found that INI1/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 12 11 شماره
صفحات -
تاریخ انتشار 2014